Research in the neuroscience/neurophysiology area includes studies of traumatic brain injury and spinal cord injury, neural control of cough, respiration and the cardiovascular system, visceral pain, autonomic function, and neural regulation of airway function in diseases such as cystic fibrosis and asthma.
Faculty involved in neurophysiology:
Donald C Bolser
Cough is the most common reason why sick patients visit physicians in the US. This defensive reflex is the most common manifestation of tobacco- and non-tobacco-related pulmonary diseases. Furthermore, cough suppressant (also called antitussive) drugs are among the most commonly prescribed in the world. Significant gaps exist in our understanding of how cough is produced and how this defensive reflex is inhibited by antitussive drugs. The long-range goal of research in our laboratory is to delineate the how the nervous system produces and regulates cough. We use antitussive drugs as tools to determine how the cough system is controlled. As such, our work also will expand our knowledge of the mechanisms by which these drugs inhibit cough. Our current approach incorporates the use of multiple extracellular electrode array technology to investigate the behavior of spontaneously active and recruited neurons in the brainstem during cough. Determination of the identity and functional relationships between these neurons will allow modeling of the configuration of the brainstem cough network. Perturbation of the behavior of these neurons with antitussive drugs will allow us to identify the mechanism by which cough suppressants act to inhibit this behavior.
Paul W Davenport
My research team investigates the afferent and efferent mechanisms involved in the behavioral control of breathing pattern, respiratory defensive reflexes, respiratory response to exercise and the neural mechanisms of respiratory perception. Our research focus is on the physiological mechanisms of central neural behavioral control of respiratory pattern. We investigate the role of pulmonary and respiratory muscle afferents in activating cognitive centers of the brain, behavioral control of breathing pattern and respiratory muscle strengthening rehabilitation of disorders in swallow (dysphagia) and cough (dystussia). Our patient studies have focused on the control of breathing pattern in individuals with neuromuscular disease, spinal injury, stroke and asthma. My research laboratory has also studied the sense of respiratory breathing effort for load compensation in humans and experimental animals. I am also studying high frequency oscillation of the airways of humans and experimental animals which increases the concentration of exhaled molecules and decreases the sense of respiratory breathing effort. My lab is also investigating the effect of respiratory muscle strength training on exercise performance in healthy sedentary individuals and athletes.
Richard Johnson
The neurophysiology/neuroanatomy/immunohistochemistry of visceral and somatic sensory/motor neurons and the synaptic/functional interactions with spinal cord and brainstem interneurons. Investigation of the neural circuit maps, physiological mechanisms, and the therapeutic strategies associated with spinal cord/peripheral nerve injury and visceral organ dysfunction (including pancreas/diabetes, peripheral vasculature, urogenital tract). Teaching in anatomy and neuroscience.

Leah R Reznikov PhD
The research interests of my lab are centered on the interface of the nervous system and the airway. Using multidisciplinary approaches, we aim to answer three big picture questions: 1) Is dysfunction of the nervous system sufficient to induce airway disease? 2) What are the neural substrates that detect airway insults? 3) Can targeting the nervous system prevent airway disease?
To answer these questions, we use models of asthma and cystic fibrosis, with a special emphasis on early stage life. We perform in vitro and in vivo studies in parallel, and utilize numerous techniques ranging from basic molecular biology to microscopy to ion transport studies to whole animal physiology. We are keenly interested in the communication of the nervous system with the airway, and the processes governing transmission of that information to target tissues (i.e. epithelia, smooth muscle, submucosal glands). The goal of all our efforts is to improve human health and discover new mechanisms of airway disease.
- Integrative neuroscience